下列物质应用错误的是
A .石墨用作润滑剂 B .氧化钙用作食品干燥剂
C .聚乙炔用作绝缘材料 D .乙二醇溶液用作汽车防冻液
C
【详解】
A .石墨层与层之间的作用力很小,容易在层间发生相对滑动,是一种很好的固体润滑剂, A 项不符合题意;
B .氧化钙可以和水发生反应生成氢氧化钙,可以用作食品干燥剂, B 项不符合题意;
C .聚乙炔的结构中有单键和双键交替,具有电子容易流动的性质,是导电聚合物, C 项符合题意;
D .乙二醇容易与水分子形成氢键,可以与水以任意比例互溶。混合后由于改变了冷却水的蒸汽压,冰点显著降低,故乙二醇可以用作汽车防冻液, D 项不符合题意;
故选 C 。
氢键:
(1)概念:已经与电负性很大的原子(如N、O、F) 形成共价键的氢原子与另一个电负性很大的原子(如 N、O、F)之问的作用力。如水分子问的氢键如下图所示。
(2)表示方法:A—H…B一(A、B为N、O、F“一” 表示共价键,“…”表示形成的氢键)。
(3)分类
(4)属性:氢键不属于化学键,它属于一一种较强的分子间作用力,其作用能大小介于范德华力和化学键之间。
(5)对物质性质的影响
①氢键对物质熔、沸点的影响。分子问存在氧键时,破坏分子问的氢键,需要消耗更多的能量,所以存在氢键的物质具有较高的熔点和沸点。
例如:氮族、氧族、卤素中的N、O、F的氧化物的熔、沸点的反常现象。
②氢键对物质溶解度的影响:氢键的存在使物质的溶解性增大。例如:NH3极易溶解于水,主要是由于氨分子和水分子之问形成了氢键,彼此互相缔合,因而加大了溶解。再如乙醇、低级醛易溶于水,也是因为它们能与水分子形成氢键。
③氢键的存在会引起密度的变化。水结冰时体积膨胀、密度减小的反常现象也可用氢键解释:在水蒸气中水以单个的水分子形式存在;在液态水中,通常是几个水分子通过氢键结合,形成(H2O)n小集团;在固态水(冰)中,水分子大范围地以氢键互相连接,成为疏松的晶体,因此在冰的结构中有许多空隙,造成体积膨胀,密度减小。
④分子内氢键与分子间氢键对物质性质的不同影响:氢键既可以存在于分子内部的原子之间,也可以存在于分子间的原子之间,只不过这两种情况对物质性质的影响程度是不一样的。例如,邻羟基苯甲醛存在分子内氢键:熔点为2℃,沸点为196. 5℃;对羟基苯甲醛存在分子间氢键:熔点为 115℃,沸点为250℃。由此可见,分子间氢键使物质的熔、沸点更高。
6)存在:水、醇、羧酸、酰胺、氨基酸、蛋白质、结晶水合物等物质中都能存在;生命体中许多大分子内也存在氢键,如氢键是蛋白质具有生物活性的高级结构的重要原因,DNA双螺旋的两个螺旋链也是以氢键相互结合的。
由已经与电负性很大的原子形成共价键的氢原子(如水分子中的氢)与另一个电负性很大的原子(如水分子中的氧)之间的相互作用。氢键有分子间氢键和分子内氢键。氢键比化学键弱,但比范德华力强。
(1)熔点、沸点:分子间有氢键的物质熔化或气化时,除了要克服纯粹的分子间力外,还必须提高温度,额外地供应一份能量来破坏分子间的氢键,所以这些物质的熔点、沸点比同系列氢化物的熔点、沸点高。分子内生成氢键,熔、沸点常降低。例如有分子内氢键的邻硝基苯酚熔点(45℃)比有分子间氢键的间位熔点(96℃)和对位熔点(114℃)都低。
(2)溶解度:在极性溶剂中,如果溶质分子与溶剂分子之间可以形成氢键,则溶质的溶解度增大。HF和NH3在水中的溶解度比较大,就是这个缘故。
(3)粘度:分子间有氢键的液体,一般粘度较大。例如甘油、磷酸、浓硫酸等多羟基化合物,由于分子间可形成众多的氢键,这些物质通常为粘稠状液体。
(4)密度:液体分子间若形成氢键,有可能发生缔合现象,例如液态HF,在通常条件下,还有通过氢键联系在一起的复杂分子(HF)n。nHF(HF)n。其中n可以是2,3,4…。这种由若干个简单分子联成复杂分子而又不会改变原物质化学性质的现象,称为分子缔合。分子缔合的结果会影响液体的密度。
(5)表示方法:X—H……Y(NOF)一般都是氢化物中存在
登录并加入会员可无限制查看知识点解析